Exact subgrid interface correction schemes for elliptic interface problems.

نویسندگان

  • Jae-Seok Huh
  • James A Sethian
چکیده

We introduce a nonconforming finite-element method for second order elliptic interface problems. Our approach applies to problems in which discontinuous coefficients and singular sources on the interface may give rise to jump discontinuities in either the solution or its normal derivative. Given a standard background mesh and an interface that passes between elements, the key idea is to construct a singular correction function that satisfies the prescribed jump conditions, providing accurate subgrid resolution of the discontinuities. Utilizing the closest point extension and an implicit interface representation by the signed distance function, an algorithm is established to construct the correction function. The result is a function that is supported only on the interface elements, represented by the regular basis functions, and bounded independently of the interface location with respect to the background mesh. In the particular case of a constant second-order coefficient, our regularization by a singular function is straightforward, and the resulting left-hand side is identical to that of a regular problem without introducing any instability. The influence of the regularization appears solely on the right-hand side, which simplifies the implementation. In the more general case of discontinuous second-order coefficients, a normalization is invoked which introduces a constraint equation on the interface. This results in a problem statement similar to that of a saddle-point problem. We employ two-level iteration as the solution strategy, which exhibits aspects similar to those of iterative preconditioning strategies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

65n12, 65n30 a New Multiscale Finite Element Method for High-contrast Elliptic Interface Problems

We introduce a new multiscale finite element method which is able to accurately capture solutions of elliptic interface problems with high contrast coefficients by using only coarse quasiuniform meshes, and without resolving the interfaces. A typical application would be the modelling of flow in a porous medium containing a number of inclusions of low (or high) permeability embedded in a matrix...

متن کامل

A new multiscale finite element method for high-contrast elliptic interface problems

We introduce a new multiscale finite element method which is able to accurately capture solutions of elliptic interface problems with high contrast coefficients by using only coarse quasiuniform meshes, and without resolving the interfaces. A typical application would be the modelling of flow in a porous medium containing a number of inclusions of low (or high) permeability embedded in a matrix...

متن کامل

High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources

This paper introduces a novel high order interface scheme, the matched interface and boundary (MIB) method, for solving elliptic equations with discontinuous coefficients and singular sources on Cartesian grids. By appropriate use of auxiliary line and/or fictitious points, physical jump conditions are enforced at the interface. Unlike other existing interface schemes, the proposed method disas...

متن کامل

A Mathematical Model and Numerical Solution of a One Dimensional Steady State Heat Conduction Problem by Using High Order Immersed Interface Method on Non- Uniform Mesh

Abstract: Elliptic interface problems arise in various areas of science and engineering. The steady state heat conduction in layered bodies is one of the largest areas of application of elliptic interface problems. In this paper, a mathematical model and solution of a one dimensional elliptic interface problem which represents a steady state heat conduction problem in composite medium have been...

متن کامل

MIB method for elliptic equations with multi-material interfaces

Elliptic partial differential equations (PDEs) are widely used to model real-world problems. Due to the heterogeneous characteristics of many naturally occurring materials and man-made structures, devices, and equipments, one frequently needs to solve elliptic PDEs with discontinuous coefficients and singular sources. The development of high-order elliptic interface schemes has been an active r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 29  شماره 

صفحات  -

تاریخ انتشار 2008